All posts by bloggins86

How to tell if Virtual Machine backups are running full database backups on a SQL Server instance

Some Virtual Machine backup solutions use the SQL Server VSS writer service to make SQL Server database backups as part of the VM backup.

You may not have had visibility on this process so to confirm if this is happening in your environment open up SQL Server Management Studio (SSMS) then in Object Explorer right click on the instance name, click on new query and run the script below. 

This query looks for entries in the physical_device_name field of msdb.dbo.backupmediafamily that are not directory paths.

SELECT @@SERVERNAME AS ServerName
	,bs.backup_set_id AS BackupSetId
	,bs.database_name AS DbName
	,bs.backup_start_date AS BackupStartDate
	,bs.backup_finish_date AS BackupFinishDate
	,CAST(CAST(bs.backup_size / 1000000 AS INT) AS VARCHAR(14)) + ' ' + 'MB' AS [Size]
	,bs.[type] AS BackupType
	,CASE bs.[type]
		WHEN 'D'
			THEN 'Full Backup'
		WHEN 'I'
			THEN 'Differential Backup'
		WHEN 'L'
			THEN 'TLog Backup'
		WHEN 'F'
			THEN 'File or filegroup'
		WHEN 'G'
			THEN 'Differential file'
		WHEN 'P'
			THEN 'Partial'
		WHEN 'Q'
			THEN 'Differential Partial'
		END AS BackupTypeDescription
	,bmf.physical_device_name AS BackupFilePath
	,CAST(bs.first_lsn AS VARCHAR(50)) AS FirstLogSeqNo
	,CAST(bs.last_lsn AS VARCHAR(50)) AS LastLogSeqNo
FROM msdb.dbo.backupset AS bs WITH (NOLOCK)
INNER JOIN msdb.dbo.backupmediafamily AS bmf WITH (NOLOCK) ON bs.media_set_id = bmf.media_set_id
WHERE bs.[type] = 'D'
	AND bmf.physical_device_name NOT LIKE '%\%'
ORDER BY bs.database_name ASC
	,bs.backup_set_id ASC;

 

For the field BackupFilePath if you see GUID looking entries like {AQ8F5957-2804-4X05-9EE5-109EB87EBCAB}5 the VM backup is probably running full database backups on the SQL Server.

It might be time to review your recovery strategy as the VM backups could be covering the same ground as the SQL Server backups creating a lot of expensive redundancy due to unnecessary replication of work.

How to schedule a job to restore the last backup made of a SQL Server database

This post provides you with a script that will generate a restore script for a database using the latest full backup file that exists in a directory. (No need to state the filename explicitly)

You need to provide the following at the start of the script:

  • The target database i.e. the database you will restore to
  • The directory where the backup file is saved

If you are using the excellent Ola Hallengren maintenance solution (see link) the directory path will look something like below. If you’re not using Ola’s solution, you should be.

\\ServerWhereBackupsAreSaved\DriveName\InstanceName\TargetDatabase\Full\

This restore script is designed to work with Ola’s solution as it segregates the backup directory structure such that each database has an allocated folder and each full backup file is named with the date and time of the file creation.

The restore script determines which backup file is the latest backup file based on the max name. So for the script to work it is assumed you have an appropriate backup strategy (i.e. using Ola’s solution) were backup types are segregated into different folders, backup names have a date reference and the backup location is dedicated to backups and nothing else, i.e. no trash files in the location.

Some use cases for this solution might be:

  • Restoring a nightly backup to another instance for reporting purposes
  • Restoring backups to a development environment
  • Restoring backups to another server to test the backups

You can use the logic in a stored procedure or as the T-SQL in a job step and schedule accordingly.

/*
You need to reference the following:
* The target database i.e. the database you will restore to.
* The directory where the backup file is saved.
If you are using the Ola Hallengren backup scripts the directory path will look 
something like below.
\\ServerWhereBackupsAreSaved\DriveName\InstanceName\TargetDatabase\Full\

Find & Replace the follow text for the target database and directory:

TARGET_DATABASE
DIR_PATH
*/
/*
Declare Variables
*/
DECLARE @DatabaseToRestore AS VARCHAR(MAX);
DECLARE @DirToSearch AS VARCHAR(MAX);
DECLARE @ShellCommand AS VARCHAR(MAX);
DECLARE @BackupFile AS VARCHAR(MAX);
DECLARE @Sql AS VARCHAR(MAX);

/*
Set User Variables
*/
SET @DatabaseToRestore = 'TARGET_DATABASE';
SET @DirToSearch = 'DIR_PATH';
SET @ShellCommand = 'dir ' + @DirToSearch;

/*
Create Temp Table To Hold xp_cmdshell Output
*/
IF OBJECT_ID('tempdb..#DirList') IS NOT NULL
	DROP TABLE #DirList;

CREATE TABLE #DirList (
	Id INT identity(1, 1)
	,line NVARCHAR(1000)
	);

/*
Enable Advanced Options To Enable xp_cmdshell Temporarily
*/
EXEC master.dbo.sp_configure 'show advanced options'
	,1;

RECONFIGURE
WITH OVERRIDE;

EXEC master.dbo.sp_configure 'xp_cmdshell'
	,1;

RECONFIGURE
WITH OVERRIDE;

/*
Run The Shell Command To Capture And Write Dir Info To Temp Table
*/
SET @Sql = '
INSERT INTO #DirList (line)
EXEC xp_cmdshell ' + '''' + @ShellCommand + '''' + ';';

EXEC (@Sql);

EXEC master.dbo.sp_configure 'xp_cmdshell'
	,0;

/*
Disable Advanced Options And xp_cmdshell Again
*/
RECONFIGURE
WITH OVERRIDE;

EXEC master.dbo.sp_configure 'show advanced options'
	,0;

RECONFIGURE
WITH OVERRIDE;

/*
Get The Last Backup File Name And Save To A Variable
*/
WITH CTE
AS (
	SELECT SUBSTRING(line, 37, 100) [FileName]
	FROM #DirList
	WHERE Id > (
			SELECT MIN(Id)
			FROM #DirList
			WHERE line LIKE '%<DIR>%..%'
			)
		AND Id < (
			SELECT MAX(Id) - 2
			FROM #DirList
			)
	)
SELECT @BackupFile = [FileName]
FROM CTE
WHERE [FileName] = (
		SELECT MAX(FileName)
		FROM CTE
		);

/*
Create The Restore Script
*/
SET @BackupFile = @DirToSearch + @BackupFile
SET @Sql = '
ALTER DATABASE ' + QUOTENAME(@DatabaseToRestore) + ' SET SINGLE_USER WITH ROLLBACK IMMEDIATE;
RESTORE DATABASE ' + QUOTENAME(@DatabaseToRestore) + ' FROM DISK = ' + '''' + @BackupFile + '''' + '
WITH NORECOVERY
,REPLACE;
RESTORE DATABASE ' + QUOTENAME(@DatabaseToRestore) + ' WITH RECOVERY;
'

/*
To Directly Execute The Script Uncomment The EXEC Statement And Delete The Select Statement
*/
/*
EXEC (@Sql)
*/
SELECT @Sql

 

How to generate a random password with T-SQL

The following script will generate a random 10 character password that meets the complexity requirement for Microsoft Windows. To generate a password just run the script in a new SQL Server Management Studio window. The logic can also be easily turned into a function.

The option of symbol characters is limited to what’s shown below as dealing with quotes and obscure characters in a password is often more trouble than it is worth. The password generated however should still be very secure as it will be 10 characters long with a guaranteed number, lowercase letter, uppercase letter and a symbol.

!
#
$
%
&
(
)
*
+

/*Declare Variables*/
DECLARE @i INT;
DECLARE @Pw VARCHAR(MAX);
DECLARE @Numbers TABLE (Characters CHAR(1));
DECLARE @LowerCase TABLE (Characters CHAR(1));
DECLARE @UpperCase TABLE (Characters CHAR(1));
DECLARE @Symbols TABLE (Characters CHAR(1));
DECLARE @BaseCharacters TABLE (Characters CHAR(1));
DECLARE @GuaranteedCharacters TABLE (Characters CHAR(1));
DECLARE @PwCharacters TABLE (Characters CHAR(1));

/*Generate Numbers*/
SET @i = 0;

WHILE @i <= 9
BEGIN
	INSERT INTO @Numbers
	SELECT @i

	SET @i = @i + 1
END;

/*Generate Lowercase Letters*/
SET @i = 97;

WHILE @i <= 122
BEGIN
	INSERT INTO @LowerCase
	SELECT CHAR(@i)

	SET @i = @i + 1
END;

/*Generate Uppercase Letters*/
SET @i = 65;

WHILE @i <= 90
BEGIN
	INSERT INTO @UpperCase
	SELECT CHAR(@i)

	SET @i = @i + 1
END;

/*Generate Symbols*/
SET @i = 33;

WHILE @i <= 43
BEGIN
	IF (
			@i = 34
			OR @i = 39
			)
	BEGIN
		SET @i = @i + 1
	END

	INSERT INTO @Symbols
	SELECT CHAR(@i)

	SET @i = @i + 1
END;

/*
Randomly Select A Number, Lowercase Letter,
Uppercase Letter And A Symbol So Four Character Types
Are Guaranteed To Be Present Somewhere In The Password
*/
INSERT INTO @GuaranteedCharacters (Characters)
SELECT TOP 1 Characters
FROM @Numbers
ORDER BY NEWID();

INSERT INTO @GuaranteedCharacters (Characters)
SELECT TOP 1 Characters
FROM @LowerCase
ORDER BY NEWID();

INSERT INTO @GuaranteedCharacters (Characters)
SELECT TOP 1 Characters
FROM @UpperCase
ORDER BY NEWID();

INSERT INTO @GuaranteedCharacters (Characters)
SELECT TOP 1 Characters
FROM @Symbols
ORDER BY NEWID();

/*
Randomly Select Another 6 Characters
*/
INSERT INTO @BaseCharacters
SELECT TOP 6 Characters
FROM (
	SELECT Characters
	FROM @Numbers
	
	UNION ALL
	
	SELECT Characters
	FROM @LowerCase
	
	UNION ALL
	
	SELECT Characters
	FROM @UpperCase
	
	UNION ALL
	
	SELECT Characters
	FROM @Symbols
	) AS Characters
ORDER BY NEWID()

/*Generate A 10 Character Password*/
INSERT INTO @PwCharacters (Characters)
SELECT Characters
FROM (
	SELECT Characters
	FROM @BaseCharacters
	
	UNION ALL
	
	SELECT Characters
	FROM @GuaranteedCharacters
	) AS Characters
ORDER BY NEWID()

/*Save The Password To A String*/
SELECT @Pw = COALESCE(@Pw + Characters, Characters)
FROM @PwCharacters

SELECT @Pw AS PW;

 

If you found this post helpful please like, comment and share.

How to move and or rename Database files in SQL Server

An example use case for the process below could be you need to move database files to a new drive. Another example might be your organisation intends to run a legacy database along side a new updated database with both sharing the same database name in the same instance with the files located in the same directory with the same names. Obviously this cannot be done and requires the database names to differ and the files to be renamed or not exist in the same directory.

For example AdventureWorks might become AdventureWorks_Legacy while a new and improved AdventureWorks database retains the original database name. The associated database file names would also need to be changed/moved to reflect this.

Someone might also want to do something like this for test purposes but obviously having test resources in a live environment would not be recommended if avoidable.

The first step to moving and renaming the files is to copy and modify the script below. Note the script below assumes you want to move and change the names of the files. To avoid any database conflicts you only need to do one or the other.

/* 
Find & Replace DbName with the name of the Database you are working with
*/
USE [DbName];

/*
Changing Physical names and paths
Replace 'C:\...\NewDbName.mdf' with full path of new Db file to be used
*/
ALTER DATABASE DbName MODIFY FILE (
	NAME = ' DbName '
	,FILENAME = 'C:\...\NewDbName.mdf'
	);

/*
Replace 'C:\...\NewDbName_log.ldf' with full path of new Db log file to be used
*/
ALTER DATABASE DbName MODIFY FILE (
	NAME = ' DbName _log'
	,FILENAME = 'C:\...\NewDbName_log.ldf'
	);

/*
Changing logical names
*/
ALTER DATABASE DbName MODIFY FILE (
	NAME = DbName
	,NEWNAME = NewDbName
	);

ALTER DATABASE DbName MODIFY FILE (
	NAME = DbName_log
	,NEWNAME = NewDbName_log
	);
Once the script has been set up as desired follow the steps below:
  1. Open Microsoft SQL Server Management Studio (SSMS).
  2. Connect to the server that houses the Db you are working with.
  3. Run the modified script
  4. Right click on the Db in SSMS and select Tasks > Take Offline
  5. If you are moving the database files log into the server that houses the database files and copy and move the MDF and LDF files to the location you specified in first two alter commands. If the script specifies new names rename the copied files to match the names given in the script exactly.
  6. Go back to SSMS and right click on the Db and select Tasks > Bring Online.
  7. If you have moved the files once the database is back online and confirmed working as expected the unused original files can be deleted.
  8. Now you can rename the Db to the new name if you wish using SSMS.

How to demonstrate the space usage of a Null Varchar(Max) column

An empty Varchar(Max) column uses a negligible amount of disk space. The script below demonstrates this by creating the table TestTb which contains one column named NullColumn that has a Varchar(Max) data type. When the table is created the column NullColumn is populated with 100,000 rows of Null.

The two readings below show the table when it has just been created and the table with 100,000 rows entered.

Results

IF OBJECT_ID('dbo.TestTb', 'U') IS NOT NULL
	DROP TABLE dbo.TestTb;

CREATE TABLE TestTb (NullColumn VARCHAR(MAX));
GO

sp_spaceused 'TestTb';

DECLARE @i AS INT;

SET @i = 0;

WHILE @i < 100000
BEGIN
	INSERT INTO TestTb (NullColumn)
	VALUES (NULL)

	SET @i = @i + 1
END;
GO

sp_spaceused 'TestTb';

IF OBJECT_ID('dbo.TestTb', 'U') IS NOT NULL
	DROP TABLE dbo.TestTb;

 

How to filter sp_who2 to create KILL statements

Until now the only way to kill wayward commands or queries in SQL Server was to run sp_who or sp_who2, look for the record with abnormal CpuTime or DiskIO readings (or look for the login of the guy who never knows what he’s doing), and take note of the corresponding Spid number by running your finger along the screen tracing it back to the ID so you don’t get confused and end up killing the wrong Spid from another record by mistake.

But now there’s a better way if you know the the likely culprit you want to kill in advance. The script below will allow you to filter the results of sp_who2 based on any of the returned columns. You’ll now be able to specify the database name or login name etc. and the query will return only the rows that match your constraints. Narrow the results down enough and you’ll be left with one record to kill. Then copy the results of the KillSpid column and paste to a new SSMS window. Now you should be left with one Kill command to run with no possibility of killing the wrong Spid.

IF OBJECT_ID('tempdb..#sp_who2') IS NOT NULL DROP TABLE #sp_who2
GO

CREATE TABLE #sp_who2 (
	Spid INT
	,Status VARCHAR(255)
	,LoginName VARCHAR(255)
	,HostName VARCHAR(255)
	,BlkBy VARCHAR(255)
	,DbName VARCHAR(255)
	,Command VARCHAR(255)
	,CpuTime INT
	,DiskIO INT
	,LastBatch VARCHAR(255)
	,ProgramName VARCHAR(255)
	,Spid2 INT
	,RequestId INT
	)

INSERT INTO #sp_who2
EXEC sp_who2

SELECT 'Kill ' + CONVERT(VARCHAR(MAX), SPID) AS KillSpid
	,Spid 
	,Status 
	,LoginName 
	,HostName 
	,BlkBy 
	,DbName 
	,Command 
	,CpuTime 
	,DiskIO 
	,LastBatch 
	,ProgramName 
	,Spid2
	,RequestId
FROM #sp_who2
-- Add any filtering of the results here :
WHERE DBName NOT IN ('master')
-- Add any sorting of the results here :
-- AND ProgramName = ''
-- AND DbName = ''
-- AND LoginName = ''
-- AND HostName = ''
-- AND Status = ''
ORDER BY Spid ASC
,DBName ASC;

DROP TABLE #sp_who2

 

How to convert pcm files to wav in Linux

Over the weekend I had to make a recording on my Android phone. I used the app Virtual Recorder  thinking I’d be able to just share the file afterwards but Virtual Recorder creates pcm files not typical mp3 files. I sent the file over to my Linux laptop, running Linux mint, to convert it.

Initially I had some trouble getting the conversion to work. Here are the steps I took.

Open a terminal window and navigate to the where the pcm file is. If you don’t know how to do this use the GUI file explorer to navigate to the directory where the pcm file is and then right click on white space and click on the option to open a terminal window. The terminal will open already set to run against the directory the pcm file is located in.

If you try to run any of the commands below and you don’t have ffmpeg installed you will be notified ffmpeg needs to be installed and it will give you the command to type in and run to install it.

If you want to convert a Virtual Recorder file specially you can use this terminal command below changing the file names to what you need.

ffmpeg -f s16le -ar 11250 -ac 2 -i YouInputFileName.pcm -ar 44100 -ac 2 YouOutputFileName.wav

Converting pcm files created by other applications may have varying results due to the sample rate of the source file. For example if you replace 11250 with 22500 as in the command below your output file pitch and speed will be increased. So you may need to play around with sample rates to get the output right.

ffmpeg -f s16le -ar 22500 -ac 2 -i YouInputFileName.pcm -ar 44100 -ac 2 YouOutputFileName.wav

How to determine why a T-SQL command is unreasonably slow

If you’ve ever found yourself in the situation were a command executing against a small table is nowhere near instant there can be numerous reasons for this but the most common causes are locks and waits.

The first step in identifying the problem is to execute the script below in a new query window while the troublesome command is running.

/* Queries Not Running */
SELECT ROW_NUMBER() OVER (
		ORDER BY r.total_elapsed_time DESC
		) AS Rn
	,st.TEXT AS SqlText
	,r.*
FROM sys.dm_exec_requests r
CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS st
WHERE r.status <> 'running';

/* Queries Running */
SELECT ROW_NUMBER() OVER (
		ORDER BY r.total_elapsed_time DESC
		) AS Rn
	,st.TEXT AS SqlText
	,r.*
FROM sys.dm_exec_requests r
CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS st
WHERE r.status = 'running';

 

This script will return two lists of the currently active sessions along with the stats associated with their execution. The first list will contain all the active sessions that are not running. The second list will contain all the active sessions that are running and will likely not contain the troublesome query you’re dealing with.

Identify your session based on the SqlText field. Be sure you’ve identified the session correctly as you may decide you want to kill the process later and killing the wrong one could cause you a lot of trouble.

  • status : If the status is not running look to the other fields in the returned result set to help identify the problem. If the session is in the running result set but you are unhappy with the performance it is likely the T-SQL needs to be optimized to make it run faster. This is a very broad topic and there are tons of articles and guides on the internet dealing with it.
  • blocking_session_id : If another session is blocking yours from executing, e.g. it has locked a table your command needs to write to, then this field will include the Id of the session causing the table to be locked. You can use EXEC sp_who2 to assess if the underlying command/query is experiencing a problem. If you are familiar with the blocking session you may know that you are able to kill the session without incurring any negative consequences. You can use the following code snippet to kill the blocking session.
    KILL blocking_session_id /*replace by the actual Id*/

    NOTE: Before you kill anything if it’s a command that has been running for a very long time it will likely take at least the same amount of time to roll back and unlock the table. You might be better off waiting for the session to finish on its own.

  • wait_type : If no blocking session is available, then the query is waiting for something, e.g. server resources etc. More details about wait types can be found HERE
  • wait_time : This stat value is measured in milliseconds. Short wait times are fine, specially in PAGEIOLATCH wait types (access to physical files) but longer wait times indicate a more serious problem.
  • last_wait_type : Indicates if the last wait type was different. This is quite helpful in analyzing if the query was blocked for the same reason before.

 

How to get the date & time a job or schedule was modified in SQL Server

The script below has one parameter, @SD or start date. The logic of the script will return two tables showing the modified jobs and schedules from the start date onward.

By default the start date will be set to one year ago to the day which will return a full years worth of data up to the time the script is run. To enter a date manually change the line SET @SD = NULL; –‘20180101 00:00:00’; removing NULL; — and changing the date time text. 

USE msdb;
GO

DECLARE @SD AS DATETIME;

SET @SD = NULL; --'20180101 00:00:00';

IF @SD IS NULL
BEGIN
SET @SD = DATEADD(YEAR, - 1, GETDATE());
END;

SELECT @SD AS StartDate;

-- Jobs that have been modified
SELECT [Name] AS JobName
	,[Enabled]
	,[Date_created]
	,[Date_modified]
FROM sysjobs
WHERE [date_modified] > @SD
--AND enabled = 0
ORDER BY [date_modified] DESC;

-- Schedules that have been modified
SELECT [Name] AS ScheduleName
	,[Enabled]
	,[Date_created]
	,[Date_modified]
FROM sysschedules
WHERE [date_modified] > @SD
--AND enabled = 0
ORDER BY [date_modified] DESC;
GO

 

How to rename and/or remove tables in SQL Server with T-Sql generated by Excel formulas

This post deals with using an Excel file to generate T-Sql code to rename and/or remove tables given a scenario like the following. (To generate T-Sql to remove tables using T-sql see this post.)

Say someone sends you a list via an email or text file of tables they want renamed or removed from a database . You could go into SSMS object explorer and rename or delete each table in the list one by one. Or you could write the T-Sql statements individually but chances are you can speed things up using Excel.

With Excel you can input the schema and table name into a given cell and the T-Sql code will be generated to rename and drop the table using formulas.

To do this you can just download the Excel file template here. Download

Rename And Drop Script Generator

The template is setup assuming you are intending on the dropping the table sometime in the future but first you will be renaming it.

A good approach for removing objects is to rename the objects first. This makes it easier to put the environment back the way it was if there are any problems encountered. After a set period of time if there is no negative impact on the overall environment you can script out the object then drop it. (Obviously do this in a test environment first if possible)

To aid further in a cleanup project the Excel file also acts as a form that can be used to track progress as it contains the columns RenameDate, RestoreDate and DropDate. It also contains the column RestoreOriginalName. This column holds the formula to create the T-Sql code to renamed the tables back if there are any problems encountered.

You can adjust the formula in cell D2 to somethings other than _DELETE_ if you want to change the prefix so the tables will be renamed something else. If you just want to remove the tables you’ll have to run the script from column D before you can drop the tables using the script from column F.

Remember to drag the formula down for as many table entries as you have and it will generate the T-Sql needed.

You can create the Excel file manually yourself without downloading it.

To do so open a new Excel file and in an empty sheet name the first 9 columns as below:

A1: DatabaseName
B1: SchemaName
C1: TableName
D1: RenameForDeletion
E1: RestoreOriginalName
F1: DropTable
G1: RenameDate
H1: RestoreDate
I1: DropDate

For D2 enter the following:

=”USE [“&A2&”]; IF (EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = ‘”&B2&”‘ AND TABLE_NAME = ‘”&C2&”‘)) BEGIN exec sp_rename ‘”&B2&”.”&C2&”‘, ‘_DELETE_”&C2&”‘ END ELSE BEGIN SELECT ‘TABLE [“&A2&”].[“&B2&”].[“&C2&”] DOES NOT EXIST’ AS [RenameFailed] END;”

For E2 enter the following:

=”USE [“&A2&”]; IF (EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = ‘”&B2&”‘ AND TABLE_NAME = ‘_DELETE_”&C2&”‘)) BEGIN exec sp_rename ‘”&B2&”._DELETE_”&C2&”‘, ‘”&C2&”‘ END ELSE BEGIN SELECT ‘TABLE [“&A2&”].[“&B2&”].[“&C2&”] DOES NOT EXIST’ AS [RenameFailed] END;”

For F2 enter the following:

=”USE [“&A2&”]; IF (EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = ‘”&B2&”‘ AND TABLE_NAME = ‘_DELETE_”&C2&”‘)) BEGIN DROP TABLE [“&B2&”].[_DELETE_”&C2&”] END;”

To test that the scripts generated work you can create the mock database and table using the script below. The Excel file is loaded with these values by default.

CREATE DATABASE [TidBytez];
GO

USE [TidBytez]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE TABLE [dbo].[Customer] ([ID] [int] NULL) ON [PRIMARY]
GO